Hippocampus: from cells to physiology and human pathology

Rebecca Piskorowski Synaptic Plasticity and Neural Networks, INSERM UMRS1266

> 102-108 rue de la santé rebecca.piskorowski@parisdescartes.fr

Physiology of Cells and Synapses

Forms of Memory

Larry Squire, *Memory systems of the brain: A brief history and current perspective.* Neurobiology of Learning and Memory. (2004) 82:171-177

Forms of Memory

Larry Squire, *Memory systems of the brain: A brief history and current perspective*. Neurobiology of Learning and Memory. (2004) 82:171-177

Declarative memory / Episodic memory

Declarative memory / Episodic memory

Episode - Event in time

Collection of past personal experiences that occurred at a particular place and time.

Explicit: who, what, when, where and why

Memory formation is central to our sense of self and attachment to others.

Goodrich-Hunsaker N J et al. Chem. Senses 2009

Patient H.M.

Henry Molaison (1926 - 2008)

Photo © Public Broadcasting Online by WGBH

Very intelligent and agreeable young man.

Suffered from terrible life-threatening epileptic seizures.

In 1953, when he was 27 years old, he underwent experimental brain surgery. Most of both the left and right hippocampus were removed from H.M.'s brain.

Patient H.M.

Larry Squire and John Wixted, "The cognitive neuroscience of human memory since H.M.", *Annual Reviews of Neuroscience*. 2011

Before and after his surgery, he had an above-average I.Q.

After the surgery he had no trouble moving or speaking.

Psychologically, he was very healthy.

Following the surgery, H.M. suffered from severe anterograde amnesia. He lost the ability to form new memories.

Short Communications

The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat

Extensive progress has been made in understanding spatial learning

Extracellular Recording

place field

place field

= Action Potential Firing

Ishizuka et al, Journal of Comparative Neurobiology, 1995.

Ishizuka et al, Journal of Comparative Neurobiology, 1995.

Ishizuka et al, Journal of Comparative Neurobiology, 1995.

Questions:

How do hippocampal neurons become encode information?

Ishizuka et al, Journal of Comparative Neurobiology, 1995.

Point neuron Single-node integrating neuron

excitatory input

excitatory input

How does this happen?

Ionic currents and the membrane potential:

Hodgkin AL and Katz B 1949. J physiol. 180:37-77

Electrical properties of cell membranes

Electrical properties of cell membranes

Time after shock (ms)

Hodgkin & Huxley, 1951

Hodgkin & Huxley, 1951

+90 mV

 E_M (mV)

Hodgkin & Huxley, 1951

Resting membrane potential:

Electrical model of the steady-state cell membrane

Other contributors to the resting membrane potential:

Sodium-Potassium ATPase Chloride transporters Leak currents

Ion channels

Ion Selectivity	Rev, mV	Pharmacological nomenclature		Genes
Na+	+40 to +60	I _{Nat} , I _{Nap}	Nav1, Nav2,Nav12.X	<i>scn1a, scn1b, scn2a,</i> ect.
K+	-90 to -100	I _C I _A I _K I _{DR} I _{AHP}	Kv1, Kv2, Kv3, Kv4.X	kcna1, kcna2, kcnb, ect.
Ca ²⁺	+120 to +150	I _T I _L I _N I _R I _{P/Q}	Cav1, Cav2, Cav3.X	cacna1a, cacna1g, etc
Cl-	-70 to -75***	I _{CI}	CLC1, CLC2, CLC3, CLC4	clcn1, clcn2, etc
Na+/K+/Ca ²⁺	-30	l _h	HCN1, HCN2, HCN3, HCN4	hcn1, hcn2, hcn3, hcn4
Na+ or K+	+40 or -90	l _{leak}	NALCN, ect and K2P channels (TREK, ect)	nalcn, kcnk2, ect

Now let's talk about the inputs

Synaptic transmission!!

Chemical Synapses

- 1) Fast, ionotropic transmission
- 2) Slower, metabotropic transmission

Synaptic transmission!!

Chemical Synapses

<u>Neurotransmitters</u>

Transmitter	Receptor	lons	Effect
Glutamate	AMPA-R Kainite-R	Na+, K+, (bit of Ca ²⁺)	Excitatory
	NMDA-R	Na+, K+, Ca ²⁺	
GABA	GABA _A	Cl ⁻ (and HCO ₃)	Inhibitory
Glycine	Gly-R 1-3	Cl-	Inhibitory
Acetylcholine	nAChR1 - 7	Na+, K+, Ca ²⁺	Excitatory
Serotonin (5-HT ₃)	5HTR3	Na+, K+	Excitatory

Communication between cells: Chemical synapses

Glutamate receptors

Communication between cells: Chemical synapses

AMPA and NMDA receptors

B Current-voltage relationship of the synaptic current

excitatory input inhibitory input i

inhibitory input

Communication between cells: Chemical synapses

GABA receptors

Voltage clamp

Excitatory transmission leads to membrane depolarisation

How does inhibition work?

Shunting current

(this is important)

B Reduction of excitatory synaptic potential by inhibition

3 EPSP + IPSP

Synaptic transmission!!

Chemical Synapses

- 1) Fast, ionotropic transmission
- 2) Slower, metabotropic transmission

B Indirect gating

David McCormick, *Synaptic Organisation of the Brain,* Chapter 2, "Membrane Properties and Neurotransmitter Action," edited by Gordon Shepherd, 2003.

Integration of inputs

Timing, relative strength of inputs

Integration of inputs

Timing, relative strength of inputs

Cerebellar circuit

(Raymond et al 1996)

Spinal cord

(Raphael et al 2010)

Visual cortex

(Grossberg et al 1997)

Neurons in the hippocampus are typically more complex than single nodes.

Okay, so lets add some dendrites.

What do we gain?

Logic operations - now with dendrites

One button alone is below threshold
Logic operations - now with dendrites

Red buttons together **AND NOT** blue buttons = AP firing

Logic operations - now with branched dendrites

Logic operations - now with branched dendrites with compartments

Ishizuka et al, Journal of Comparative Neurobiology, 1995.

Ishizuka et al, Journal of Comparative Neurobiology, 1995.

Cable properties:

Neurons as electrical conductors:

"The tendency for membrane polarization to equalize over the neuron surface during passive decay is analogous to the tendency for temperature to equalize over an unevenly heated metal surface as it cools." Neurons as electrical conductors

 $\Delta V(x) = \Delta V_0 e^{-x/\lambda}$

$$\lambda = \sqrt{(r_{\rm m} / r_{\rm a})}$$

 $r_{\rm m}$ membrane resistance (Ω ·cm) r_a axial resistance (Ω / cm)

(Fat versus skinny dendrites)

Kandel et al, Principles of Neuroscience, 2013

Gulledge et al, J Neurobiology, 2008

distal to proximal proximal to distal simultaneous EPSP alone combined response Relative size of synaptic potentials injected at the soma.

Spruston, Nat Rev Neurosci, 2008

Attenuation of synaptic depolariazations relative to the soma.

Spruston, Nat Rev Neurosci, 2008

Control

Gordon Shepherd, 2003.

Ishizuka et al, Journal of Comparative Neurobiology, 1995.

Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy

G. J. Stuart¹, H.-U. Dodt², B. Sakmann¹

¹ Max-Planck-Institut für medizinische Forschung, Abteilung Zellphysiologie, Jahnstrasse 29, W-6900 Heidelberg, Germany
² Max-Planck-Institut für Psychiatrie, Klinisches Institut, Kraepelinstrasse 2, W-8000 München 40, Germany

Layer 5 pyramidal neuron

Ramaswamy & Markram Frontiers Cellular Neuroscience, 2015

H. Lau and L. Jan, Nat Rev Neuroscience, 2006

Dendrites can spike!!

Na_V channels and K_V channels produce **sodium spikes**

Ca_V channels and K_V channels produce calcium spikes

NMDA receptor activation leads to large depolarisation in dendrites

Dendrites as coincidence detectors:

Jarsky, et al, *Nature Neuroscience* 2005

Backpropagation of action potentials to dendritic compartment

Gordon Shepherd, 2003.

Backpropagating action potential in vivo.

Cortical layer 2/3 pyramidal neurons

A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons

Jeffrey C. Magee and Daniel Johnston

Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs

Henry Markram,* Joachim Lübke, Michael Frotscher, Bert Sakmann

tative synaptic contacts are marked by aroon

Spruston, Nat Rev Neurosci, 2008

Morphology

Electrical properties

Spruston, Nat Rev Neurosci, 2008

Morphology

Electrical properties

Calcium dynamics

Morphology

Electrical properties

Calcium dynamics

Dendrites consist of *compartments* that are distinct by:

Morphology

Electrical properties

Calcium dynamics

Second messenger pathways

Dynamic processes that change with experience

Synaptic amplification by dendritic spines enhances input cooperativity

Mark T. Harnert¹*, Judit K. Makara^{1,2}*, Nelson Spruston¹, William L. Kath³ & Jeffrey C. Magee¹

Now it will become interesting

Hippocampal encoding of space

place field

Ishizuka et al, Journal of Comparative Neurobiology, 1995.

Intracellular Determinants of Hippocampal CA1 Place and Silent Cell Activity in a Novel Environment

Jérôme Epsztein,^{1,2,3,4} Michael Brecht,¹ and Albert K. Lee^{1,5,*} ¹Bernstein Center for Computational Neuroscience, Humboldt University, Berlin 10115, Germany ²Institut de Neurobiologie de la Méditerranée, Marseille 13273, France ³Institut National de la Santé et de la Recherche Médicale U901, Marseille 13273, France ⁴Université de la Méditerranée Aix-Marseille II, UMR S901, Marseille 13273, France ⁵Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA 20147, USA ⁴Correspondence: leea@janelia.hhmi.org DOI 10.1016/j.neuron.2011.03.006

Epsztein et al., Neuron, 2011

neuroscience

Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons

Katie C Bittner¹, Christine Grienberger¹, Sachin P Vaidya¹, Aaron D Milstein¹, John J Macklin¹, Junghyup Suh^{2,3}, Susumu Tonegawa^{2,3} & Jeffrey C Magee¹

Bittner et al., Nat Neuroscience, 2017

Bittner et al., Nat Neuroscience, 2017

Bittner et al., Nat Neuroscience, 2017

Functional imaging of hippocampal place cells at cellular resolution during virtual navigation

Daniel & Dombeck¹, Christopher D Harvey¹, I in Tian², Loren I. Looger² & David W Tank¹

Dombeck et al., Nat Neuroscience, 2010

Dombeck et al., Nat Neuroscience, 2010

LEITER

mi:10.1598/eato-e19871

Calcium transient prevalence across the dendritic arbour predicts place field properties

Mary E. J. Skettidd! & Dariel A. Dambeyk

Sheffield & Dombeck Nature, 2015

mi:10.1598/eato-e18871

Calcium transient prevalence across the dendritic arbour predicts place field properties

Marrie J. Skettichl' & Dariel A. Dambeyk

Sheffield & Dombeck Nature, 2015

Sheffield & Dombeck Nature, 2015

Increased Prevalence of Calcium Transients across the Dendritic Arbor during Place Field Formation

Mark E.J. Sheffield, 1.2 Michael D. Adoff, 1 and Daniel A. Dombeck 1.3.*

¹Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA

²Present Address: Department of Neurobiology, Grossman Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA.

³Lead Contact

*Correspondence: d-dombeck@northwestern.edu https://doi.org/10.1016/j.neuron.2017.09.029

Sheffield & Dombeck Current Opinion Neurobiology, 2019

Sheffield & Dombeck Neuron, 2017

Signal in soma

Signal in dendrite

Dendritic inhibition

Dendritic inhibition

Somatic inhibition

Ishizuka et al, Journal of Comparative Neurobiology, 1995.

Sheffield & Dombeck *Current Opinion Neurobiology,* 2019

Extra Stuff

Environmental enrichment improves social memory via area CA2.

Rebecca Piskorowski Team Synaptic Plasticity and Neural Networks Institute of Psychiatry and Neuroscience of Paris

Institut national de la santé et de la recherche médicale

Institut de Psychiatrie et Neurosciences de Paris

CA regions identified by Lorente de Nó

Hippocampal area CA2

1) Plays an important role in social recognition memory

(Stevenson and Caldwell. *Eur J Neurosci.* 2014) (Hitti F and Siegelbaum SA. *Nature.* 2014)

Hippocampal area CA2

1) Plays an important role in social recognition memory

(Stevenson and Caldwell. *Eur J Neurosci.* 2014) (Hitti F and Siegelbaum SA. *Nature.* 2014)

2) Receives unique input from the hypothalamus and projects to numerous brain regions

CA2 receives input from hypothalamus

CA2 projects to several brain regions

Area CA2 was understudied for 70 years by physiologists...

Lorente de Nó J Psychology and Neurologie, 1934.

...but NOT by neuroanatomists

Area CA2 is altered in psychiatric disorders

A Reduction of Nonpyramidal Cells in Sector CA2 of Schizophrenics and Manic Depressives

Francine M. Benes, Esther W. Kwok, Stephen L. Vincent, and Mark S. Todtenkopf

BIOL PSYCHIATRY 1998; 44:88-97

Area CA2 is altered in psychiatric disorders

Molecular abnormalities of the hippocampus in severe psychiatric illness: postmortem findings from the Stanley Neuropathology Consortium

MB Knable¹, BM Barci¹, MJ Webster², J Meador-Woodruff³ and EF Torrey^{1,2}

¹ The Stanley Medical Research Institute, Bethesda, MD, USA; ² Stanley Brain Research Laboratory, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, USA; ³Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA

Out of 224 measures...

Table 2 Post hoc Mann–Whitney U test results and fold change (Δ) for abnormal hippocampal measures after correction for multiple comparisons

Measure	Schizophrenia		Bipolar		Depression	
	Р	Δ	Р	Δ	P	۵
Reelin dentate gyrus molecular layer	0.0002	0.53	0.004	0.73	0.04	0.67
Parvalbumin total CA2	< 0.0001	0.20	0.04	0.80		
Parvalbumin density CA2	< 0.0001	0.27				
22q11.2 Deletion Syndrome (De DiGeorge Syndrome)

Deletion of ~36 genes \longrightarrow 30% risk of schizophrenia diagnosis

22q11.2 Deletion Syndrome (De DiGeorge Syndrome)

Deletion of ~36 genes \longrightarrow 30% risk of schizophrenia diagnosis

Disruption in hippocampal-prefrontal synchrony that accompanies compromised memory.

Sigurdsson, Stark, Karayiorgou, Gogos and Gordon, Nature 2010.

Several cognitive and behavioral phenotypes, yet no major change in CA1 pyramidal neuron physiology.

Drew LJ, Stark KL, Fénelon K, Karayiorgou M, MacDermott AB, Gogos JA, Molecular and Cellular Neuroscience, 2011

Making it extremely difficult to evoke action potentials in CA2 pyramidal cells in the Df(16)A^{-/+} mice.

Two-Pore Domain Potassium Channel (TREK-1) Talley et al, 2001

Leak conductance, open at V_M

Play a role in neuroprotection

The is in increase in TREK-1 conductance in CA2 PNs in the Df(16)A^{-/+} mice.

Summary of changes in area CA2 of the 22q11.2 DS model:

Reduction in CA2 principle cell activity

Compromised social recognition memory

Parallels with human neuroanatomy (loss of interneurons in area CA2)

Summary of changes in area CA2 of the 22q11.2 DS model:

Reduction in CA2 principle cell activity

Compromised social recognition memory

Parallels with human neuroanatomy (loss of interneurons in area CA2)

Next steps:

Using the LgDel mouse model of 22q11.2DS

Summary of changes in area CA2 of the 22q11.2 DS model:

Next steps:

Examining area CA2 with environmental enrichment

Standard Environment, SE

Enriched Environment, EE

3 weeks

Det

There is a reduction in TREK-1 conductance with EE

There is a reduction in TREK-1 conductance with EE

There is a reduction in TREK-1 conductance with EE

VS.

How much does hippocampal CA2 contribute to EE effect?

Altered CA2 activity can potentially far-reaching consequences

What regulates TREK-1?

Next steps:

• Transcriptome analysis of CA2 pyramidal neurons (with Eduardo Gascon, Institute of Neuroscience de la Timone)

• **Phospholipase activity** (with Joëlle Chabry, Institute de Pharmacologie Moleculaire et Cellulaire)

• Inhibitory neuron physiology and synaptic plasticity
Team Synaptic Plasticity and Neural Networks

Current Team members:

Vivien Chevaleyre (co-team leader)Ludivine ThCécile Viollet, PhD (researcher)Manon ChaEleni Paiz PhD (Assistant Professor)Amel FarraLudivine Therreau (engineer)Amel FarraSadiyah Cassim (PhD student)Maïthé Loisy (PhD student)Maïthé Loisy (PhD student)Eude Lepicard (PhD student starting in Oct. 2020)Maud Muller (PhD student starting in Oct. 2020)

Former members:

Ludivine Therreau (engineer) Manon Chateaux (M2 student) Amel Farrah (M2 student)

LgDel Mice:

Francesco Papaleo, IIT

Inserm